Amazon cover image
Image from Amazon.com
Image from Google Jackets

Deep learning for natural language processing creating neural networks with python / By Palash Goyal, Sumit Pandey and Karan Jain.

By: Contributor(s): Material type: TextTextPublication details: Berkeley, CA : Apress : Imprint: Apress, 2018.Description: xvii,277p. ; PB 23.5 cmISBN:
  • 9781484236857
Subject(s): Genre/Form: Additional physical formats: Printed edition:: No titleDDC classification:
  • 006.35  1 GOYP
LOC classification:
  • QA75.5-76.95
Online resources:
Contents:
Chapter 1: Introduction to NLP and Deep Learning -- Chapter 2: Word Vector representations -- Chapter 3: Unfolding Recurrent Neural Networks -- Chapter 4: Developing a Chatbot -- Chapter 5: Research Paper Implementation: Sentiment Classification.
In: Springer eBooksSummary: Discover the concepts of deep learning used for natural language processing (NLP), with full-fledged examples of neural network models such as recurrent neural networks, long short-term memory networks, and sequence-2-sequence models. You?ll start by covering the mathematical prerequisites and the fundamentals of deep learning and NLP with practical examples. The first three chapters of the book cover the basics of NLP, starting with word-vector representation before moving onto advanced algorithms. The final chapters focus entirely on implementation, and deal with sophisticated architectures such as RNN, LSTM, and Seq2seq, using Python tools: TensorFlow, and Keras. Deep Learning for Natural Language Processing follows a progressive approach and combines all the knowledge you have gained to build a question-answer chatbot system. This book is a good starting point for people who want to get started in deep learning for NLP. All the code presented in the book will be available in the form of IPython notebooks and scripts, which allow you to try out the examples and extend them in interesting ways. You will: Gain the fundamentals of deep learning and its mathematical prerequisites Discover deep learning frameworks in Python Develop a chatbot Implement a research paper on sentiment classification.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)

Chapter 1: Introduction to NLP and Deep Learning -- Chapter 2: Word Vector representations -- Chapter 3: Unfolding Recurrent Neural Networks -- Chapter 4: Developing a Chatbot -- Chapter 5: Research Paper Implementation: Sentiment Classification.

Requires an SPL library card.

Discover the concepts of deep learning used for natural language processing (NLP), with full-fledged examples of neural network models such as recurrent neural networks, long short-term memory networks, and sequence-2-sequence models. You?ll start by covering the mathematical prerequisites and the fundamentals of deep learning and NLP with practical examples. The first three chapters of the book cover the basics of NLP, starting with word-vector representation before moving onto advanced algorithms. The final chapters focus entirely on implementation, and deal with sophisticated architectures such as RNN, LSTM, and Seq2seq, using Python tools: TensorFlow, and Keras. Deep Learning for Natural Language Processing follows a progressive approach and combines all the knowledge you have gained to build a question-answer chatbot system. This book is a good starting point for people who want to get started in deep learning for NLP. All the code presented in the book will be available in the form of IPython notebooks and scripts, which allow you to try out the examples and extend them in interesting ways. You will: Gain the fundamentals of deep learning and its mathematical prerequisites Discover deep learning frameworks in Python Develop a chatbot Implement a research paper on sentiment classification.

Mode of access: World Wide Web.

There are no comments on this title.

to post a comment.